skip to main content


Search for: All records

Creators/Authors contains: "Frey, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In a previous work, we have identified the spin of the dominant black hole of a binary from its jet properties. Analysing Very Long Baseline Array (VLBA) observations of the quasar S5 1928+738, taken at 15-GHz during 43 epochs between 1995.96 and 2013.06, we showed that the inclination angle variation of the inner (<2 mas) jet symmetry axis naturally decomposes into a periodic and a monotonic contribution. The former emerges due to the Keplerian orbital evolution, while the latter is interpreted as the signature of the spin-orbit precession of the jet emitting black hole. In this paper, we revisit the analysis of the quasar S5 1928+738 by including new 15-GHz VLBA observations extending over 29 additional epochs, between 2013.34 and 2020.89. The extended data set confirms our previous findings which are further supported by the flux density variation of the jet. By applying an enhanced jet precession model that can handle arbitrary spin orientations κ with respect to the orbital angular momentum of a binary supermassive black hole system, we estimate the binary mass ratio as ν = 0.21 ± 0.04 for κ = 0 (i.e. when the spin direction is perpendicular to the orbital plane) and as ν = 0.32 ± 0.07 for κ = π/2 (i.e. when the spin lies in the orbital plane). We estimate more precisely the spin precession velocity, halving its uncertainty from $(-0.05\pm 0.02)$ to $(-0.04\pm 0.01)^{\circ }\, \mathrm{yr}^{-1}$.

     
    more » « less
  2. Building a successful community means governing active populations and limited resources. This challenge often requires communities to design formal governance systems from scratch. But the characteristics of successful institutional designs are unclear. Communities that are more mature and established may have more elaborate formal policy systems. Alternatively, they may require less formalization precisely because of their maturity. Indeed, scholars often downplay the role that formal rules relative to unwritten rules, norms, and values. But in a community with formal rules, decisions are more consistent, transparent, and legitimate. To understand the relationship of formal institutions to community maturity and governance style, we conduct a large-scale quantitative analysis applying institutional analysis frameworks of self-governance scholar Elinor Ostrom to 80,000 communities across 3 platforms: the sandbox game Minecraft, the MMO game World of Warcraft, and Reddit. We classify communities' written rules to test predictors of institutional formalization. From this analysis we extract two major findings. First, institutional formalization, the size and complexity of an online community's governance system, is generally positively associated with maturity, as measured by age, population size, or degree of user engagement. Second, we find that online communities employ similar governance styles across platforms, strongly favoring "weak" norms to "strong" requirements. These findings suggest that designers and founders of online communities converge on styles of governance practice that are correlated with successful self-governance. With deeper insights into the patterns of successful self-governance, we can help more communities overcome the challenges of self-governance and create for their members powerful experiences of shared meaning and collective empowerment. 
    more » « less
  3. Biogenic volatile organic compounds (VOCs) play crucial roles in ecosystems at multiple scales, ranging from mediating soil microbial interactions to contributing to atmospheric chemistry. However, soil VOCs and how they respond to environmental change remains understudied. We aimed to assess how 2 abiotic global change drivers, soil warming and simulated nitrogen (N) deposition, impact soil VOC emissions over time in a temperate forest. We characterized the effect of warming, N deposition, and their interaction on the composition and emissions of soil VOCs during the growing season of 2 consecutive years. We found that chronic warming and N deposition enhanced total VOC emissions at certain times of the year (as high as 332.78 µg m–2 h–1), but that overall VOC composition was not strongly affected by these global change treatments. However, certain compounds, particularly sesquiterpenoids and alkanes, were sensitive to these treatments, with their emissions increasing under both chronic warming and N deposition. Moreover, specific signature VOCs—α-pinene, β-thujone, β-caryophyllene, and 2,4-dimethylheptane—were consistently found under chronic warming and N deposition. This suggests that emissions of specific VOC classes/compounds may increase under global change. 
    more » « less
  4. null (Ed.)
    Landscape changes can alter pollinator movement and foraging patterns which can in turn influence the demographic processes of plant populations. We leveraged social network models and four fixed arrays of five hummingbird feeders equipped with radio frequency identification (RFID) data loggers to study rufous hummingbird ( Selasphorus rufus ) foraging patterns in a heterogeneous landscape. Using a space-for-time approach, we asked whether forest encroachment on alpine meadows could restrict hummingbird foraging movements and impede resource discovery. We fit social network models to data on 2221 movements between feeders made by 29 hummingbirds. Movements were made primarily by females, likely due to male territoriality and early migration dates. Distance was the driving factor in determining the rate of movements among feeders. The posterior mean effects of forest landscape variables (local canopy cover and intervening forest cover) were negative, but with considerable uncertainty. Finally, we found strong reciprocity in hummingbird movements, indicative of frequent out and back movements between resources. Together, these findings suggest that reciprocal movements by female hummingbirds could help maintain bidirectional gene flow among nearby subpopulations of ornithophilous plants; however, if the distance among meadows increases with further forest encroachment, this may limit foraging among progressively isolated meadows. 
    more » « less
  5. null (Ed.)
    Abstract The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions. 
    more » « less
  6. Abstract

    Most terrestrial plants form mycorrhizas, but a number of agricultural plants, including the Brassicaceae, are non‐mycorrhizal. Brassicaceae can still be colonized by arbuscular mycorrhizal fungi (AMF), but species likeArabidopsis thalianaexperience growth reductions following AMF colonization at similar magnitude to that of fungal pathogen infections and lack key genes necessary for nutrient exchange.Arabidopsisalso produces specific secondary compounds via the modification of tryptophan, including indolic glucosinolates (IGs), which have anti‐fungal properties and may therefore be involved in reducing AMF colonization. This study therefore addressed whether the ability to produce IGs facilitates resistance to AMF colonization and growth suppression. We challenged with AMF inoculation transgenicArabidopsislines which produce no or enhanced IGs levels in comparison with the wild‐type. Arbuscular mycorrhizal fungal inoculation suppressed the development of IG‐removed plants, activated their pathogen‐response defenses, and enhanced AMF vesicle colonization of their root systems. Arbuscular mycorrhizal fungi had no detrimental effects on wild‐type or IG‐enhanced plants. Using BLAST to identify IG orthologs across 29 Brassicales, we also show that non‐mycorrhizal species possess orthologous proteins for IG biosynthesis toArabidopsiswhich AMF‐associated Brassicales lack. In conclusion, the IG production pathway appears to serve an important and previously unknown role in reducing AMF colonization inArabidopsisand may serve similar functions in non‐host Brassicales more broadly.

     
    more » « less